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Force correlations in the g model for general g distributions

Jacco H. Snoeijer and J. M. J. van Leeuwen
Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
(Received 14 February 2002; published 21 May 2002

We study force correlations in tlgemodel for granular media at infinite depth for genegralistributions. We
show that there are no two-point force correlations as long &alues at different sites are uncorrelated.
However, higher-order correlations can persist, and if they do, they only decay with a power of the distance.
Furthermore, we find the entire set gfdistributions for which the force distribution factorizes. It includes
distributions ranging from infinitely sharp to almost critical. Finally, we show that two-point force correlations
do appear whenever there are correlations betweealues at different sites in a layer; various cases are
evaluated explicitly.
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[. INTRODUCTION a’s are displacement vectors in the lower layer as shown in
Fig. 1. Bead transmits a fractiom; , of the forcef; to the
One of the main challenges of granular media is to charbeadi + « underneath it. These fractions are taken stochasti-
acterize the network of microscopic forces in a static beadally from a distribution satisfying the constraint
pack. In order to describe the corresponding force fluctua-
tions, Liuet al.[1] introduced they model. In this model, the S q.=1 )
beads are placed on a regular lattice and(8walaj forces a T
are stochastically transmitted, by random fractions denoted
by the symbolg. Even in its simplest version, where one which assures mechanical equilibrium in the vertical direc-
assumes a uniformy distribution, it already reproduces the tion. So, we can write the forcq on thejth bead in a layer
main feature of the experimental observations: the probabilas
ity for large forces decays exponentialli—3]. Although for
this uniform q distribution the forces become totally uncor-
related, in general, correlations do per$#t In the present
study, we investigate for whicf distributions this is the case
and we reveal the surprising nature of these correlations. IAs the weights of the particles are unimportant at infinite
order to perform an analytical study, we restrict ourselves talepth, we have left out the so-called injection term. The dis-
the scalarg model and allow only correlations between tribution of forces at infinite depth depends on thélistri-

values in a layer. More sophisticated lattice models, that intytion H(q), where the symbof] is a shorthand for all the

clude the vector nature of the force and allow correlationsq at a given layer. Thi$i(g) can be any function that is
I,a '

betx\lltehen Ia;}y(;:kr]s are r:jotl gonS|(jt¢re|(j rI[ér]e le. its behavi constrained by Eq(1). If we now assume that there are no
ough theq model IS particularly SImple, 1ts benavior: . ejations between thg values at different sites, the

turns out to be very rich. First of all, there is a so-called . . - ..~

critical q distribution, that produces a force distribution thatdlsmbmIon 's of the form

decays algebraically instead of exponentigHy6]. It there-

fore forms a critical point in the space qfdistributions, and Ha)=]1 7;(@)5( 1-, qi,a), a={q., O

its properties were recently investigated in great d¢8]. : @

A second intriguing issue concerns the top-dosymamics . S

of force correlationgthe downward direction can be inter- Where 7(q;) is symmetric in its arguments; ,. Although

preted as time[7—9]. Even if both in the initial statétop ~ We Will refer to thesey distributions as “uncorrelated,” note

layen and in the asymptotic staténfinite depth all forces  that there are always correlations between dhe of the

are uncorrelated, there will be correlations at all intermediatéame site due to thé constraint.

levels. Correlations become longer in range while their am- In the first part of this study, we show that there is only a

plitudes diminish in a diffusion process, and as a result, théimited set of »(q;) for which the stationary force distribu-

asymptotic force distribution is only approached algebration can be written as a product of single-site distributions,

ically [9]. This process is closely related to the subject of thisand therefore is totally uncorrelated. This set is an extension

study, namely, the presence of force correlations at infinitef the set that was already identified by Coppersneitlal.

depth. [4]. In their extensive study, they also provided numerical
Let us recapitulate the definition of thg model. The evidence that, in general, correlations can persist. We will

beads are assumed to be positioned on a regular lattice. Lehow that correlations are still absent in the second-order

f; be the force in the downward direction on ttte bead in  moments. However, higher-order correlations do exist and

a layer. This bead makes contact with a numbezloédads in  surprisingly enough, these turn out to decay algebraically.

the layer below, which we indicate by the indidesa. The  The results for the triangular packing and the fcc packing are

fj,IE qj*a,afjfa' (2)
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FIG. 1. The displacement vectossin the g model for(a) the triangular packingside view and (b) the fcc packingitop view).

summarized in Table I, Sec. VII. In the last part of this work, . o o

we show that one induces two-point force correlations by P'(S)IJ H(q)dgP(s(a)), (8

allowing correlations betweenvalues on different sites in a

layer. These correlations will generically vanish with awith

power law, except for the triangular packing, where the de-

cay of force correlations follows the decay of theorrela- -

tio%s. y of th S(A)=2 GiaSita- 9
The paper is organized as follows. In Sec. Il we derive a

criterion that a distributiony(q;) has to obey in order to The two representations Eqg) and(8) are equivalent, and
produce an uncorrelated stationary state. We then show ihey will both be used, depending on the nature of the prob-
Sec. lll, that this criterion is only obeyed for a limited set of lem.

7(q;). After that, we study the nature of the correlations, by The force distribution at infinite deptF_*?*(f) or P*(s) _
writing the evolution of the force moments as master equacan be obtained by finding the fixed point of the recursive
tions in Sec. 1V, and by analyzing the stationary solutions ofr€lation. The main question of this section is to determine
these equations in Sec. V. Section VI deals with the effects ofvhether a givenH(q) leads to aP*(f) that is simply a
allowing correlations between thg of different sites in a  product of single-site force distributions* (f;). In Sec. VI

layer, and the paper closes with a discussion. we will show that this can only be the case tpdistributions
of the type Eq(3). So for this section, the question is: which
Il. CRITERION FOR FACTORIZATION n(ﬁi) led to uncorrelated asymptotic states?

To answer this question, let us assume that such a fixed

Using the recursive nature of the force transmission, Eqpoint exists. i.e.

(2), one can write down the following recursive relation for

the force distributiorj4,9]: . - -

P*(H=II p*(f), or P*(9)=II p*(s). (10
| |

P’(F’):fH(a)daf P(f)df
le] 6(f;—2 qj_a,af,»_a), (4)

where we have introduced a vector notation for the forces in

Inserting this ansatz into the Laplace representation of the
recursion relation, Eq8), yields

F’*(g)zl_i[ Jﬂ(diw(l_g Qi,a>dai?’*<§ qi,asi+a)

one Iayerf=(fl, ...,fn), and for the integrations we use B
the abbreviations =11 (Sivap - Sita) (13)
i z
f df:H Jo dfi, 5 where the functiorfp(siml, o ,sHaZ) is the outcome of
the integral over théii . The arguments represent thsites
o - . that are connected to sitan the previous layer. Integrating
f dg= H f dai= H 1;[ 0 A, ©) out all forces except those at thsites connected tomeans

putting alls;=0 except the sefs; ,}:
It is often convenient to work with the Laplace transform of

Eqg. (4). Defining the Laplace transform as |~°*(Si+a1, o Sita)
F><§):f dfexp—s-HP(f), Y = W(Sivay - Siva) L] WS 00, .. )72
the recursion simplifies tp4,9] 12
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This projection of the total force distribution can only factor- ~ 1
ize if T,//(siwl, - ,siwz) is a product function as well, i.e., v(s)= (1+s)"" (18
~ ~ The corresponding single-site force distributions are
WSivap - Siva)=11 Vlsiia)- (13)
‘ ~ 1 (zn®
. _ L _ _ p*(s)=——— or p*(f)=———f21le 2
This leads to the following criterion for asymptotic factoriza- (1+s/zr)? I'(zr)
tion: (19

Given aq distribution 17(&), one can construct a factor-

ized fixed point if, and only if, there is a functiop(s) that
satisfies the following condition:

f n(d)é(l—g %)d&[@(% qasa)

We rescaled the Laplace variatdein order to put(f)=1.
Coppersmithet al. already found theseg distributions for
integer values of, also based on Eq16) [4]. However, it
z holds for any reat >0. This means that the set for which the
= H U(s,). stationary force distribution factorizes is substantially larger;

a it ranges from the infinitely sharp distribution-¢ ) to the

(14 critical distribution ¢t —0) [11]. Note that one recovers the

) o~ ) . results for the uniform distribution by putting=1.

This function(s) is related to the single-site distribution Although there is a huge variety af distributions that
as lead to uncorrelated force distributions, in general one cannot

find a(s) that obeys Eq(14). We will prove this by mak-

P*(s)=[¥(s)]% 15 . T
P ()=[¥(s)] (9 ing a Taylor expansion of/(s),
Here, we omitted the site indéx and furthermore, our for- o
mulation depends only on(the number ofj values per site T(s)= g 20
and not on the details of the lattice. v nZO VoS 20
IIl. SPECIAL CLASS OF q DISTRIBUTIONS and then try to solve for the coefficients, by imposing Eg.
LEADING TO FACTORIZATION (14). It turns out that the equations can only be solved under

special conditions, which are precisely obeyed by the class
It is a well-known fact that the so-called uniform distri- of q distributions given by Eq(17).

bution, in which7(q;) is a constant, produces an uncorre-  Let us first focus on the left-hand sideHS) of Eq. (14).
lated asymptotic force distribution. In fact, Coppersmith The Taylor expansion will give rise to terms of the type
et al. identified a countable set af distributions, of which ~ (9151)"(9282)"?- - - (4,5,)"™, which have to be integrated
the uniform distribution is a member, that have this propertyover allq,, . This leads to terms?1322~ . ~S;Z with prefactors
[_4]. Although it might seem obvious thqt a unlfo_rm distribu- (tgiven by themomentsof 7(q),
tion leads to an uncorrelated asymptotic state, it is really no
trivial. Due to the constraint of Eq1), there are correlations _— R - nn N
between theg; , on each sitd, which induce force correla- 0,0, 'qzz=f 77(Q)5( 1‘% qa)dq 0,10, -0,

tions that only disappear under the special conditions dis- 21)
cussed in the previous section, E4). In this section, we
will show when these special conditions are obeyed. These moments are not independent, due to the constraint

There is a mathematical relation that is extremely impor-gq, (1). In Appendix A, we show that the moments
tant for theq model[10]:

n= 1)8| 1— .ldgq? 22
I 1 ['(zr) JdﬁcS(l—E qa> n fn(q) ( ;q) qad; (22)

+ (1+sy)’ [T(NF

are in fact sufficient to characterize all relevant moments of
Eg. (21). Besides the moments, there are of course additional
zr prefactors consisting of combinations of thig; these are
1+ 20; QaSa the quantities we try to find, for a givendistribution 77(&).
The right-hand side(RHS) of Eq. (14) also pro-

It holds for any rear>0. From this relation, it is immedi- duces termsszlsgz~ . -S;Z, with prefactors i ¢, - - - n .

xIT (gt (16)

ately clear that for alf distributions of the type The remaining task is to equate the prefactors of the terms
siisp?---si2 on both sides of the equation. This gives a set
- I(zr) - Lz :
2(q)=——=l] (9L r>0, (17)  of equations, from which one can try to solve for tig.
[T(r)]* % The zeroth order equation is trivially obeyed for asy,

_ as can be seen by putting alj]=0. For convenience we fix
there is ay(s) that obeys Eq(14), namely, Yo=1. The same happens at first order, since for egdhe
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LHS containsz terms ¢,q,S,= 1/ ;s,, and the RHS is p™ () - p*(H)
simply s, . The first nontrivial equation appears at second 0.1

order. There are two equations, f&f and fors,s, , where /\ M

aFa': 0.0 T
z(z—1)
(Zl//2+ Tlﬂi) 2= i, o1k i
(z—1) ,12( ) 29
z(z—1 1-2z79,
2 _ 2 ool |
(z 2 > 1) 2z-1) =y7. 0.2

Due to the constraint ,q; ,=1, one can obtain an identity 0.3 . .
by multiplying the first equation by, and adding it to the 0.01 0.10 Lo f 10.00

second equation multiplied by(z—1)/2. Hence, the two
equations are not independent aigl can be solved. The
value of, depends only ony,, the second moment of tlgg

FIG. 2. Numerical simulation of g distribution withq=0.1 or
q=0.9. The small deviatiorp™(f)—p*(f) changes sign four

distribution[12]. times.

Working out the combinatorics of the higher orders, one
finds the following general mathematical structure: 15775— 7,

At the nth order, there are as many equations as there are ﬂazm- (29
different partitions{n,n,, ... n,} that makeX n,=n.

Permutations should not be considered as different because

,7(&) is symmetric in its arguments. One of these equations Forz>3, there are two independent third-order equations

is dependent, as one can obtain an identity by adding thas well, originating from{3,0,0,0. ..}, {2,1,0,0. ..}, and

equations, after multiplication by appropriate factors. {1,1,1,9...}. This problem can always be overcome by as-
Forz=2, there are two third-order equations, correspondsuming a particular relation between the momentsand

ing to the partitions{3,0} and{2,1}, of which only one is 7., corresponding to the specigldistributions of Eq/(17).

independent. This means thag can be solved as a function Since at higher orders the number of equations per coeffi-

of 7, (in Appendix A we show thaty; depends ony,, for  cienty, becomes increasingly high, there will be no other

z=2). We run into problems at fourth order, where we havedistributions than those of E¢17) that obey Eq(14), and

{4,04, {3,1, and{2,2}, and hence twa priori independent thus have an uncorrelated force distribution.

equations for one coefficient,. It turns out that the remain-

ing equations are only identical if there is a relation between

72 and 7,, namely, IV. EVOLUTION OF MOMENTS

Now that we know that, in general, correlations do exist
(24) in the stationary force distributions, it is interesting to study
the nature of these correlations. In this section, we write the
evolution of the moments as master equations, along the
In Appendix A, it is shown that this relation is precisely jines of Ref.[9]. With this formalism, we will, in the next
obeyed by the class df distributions Eq.(17) for which  section, analyze the correlations by finding the stationary
(s) was already solved. states of these master equations.
The fact that the expansion @{s) =[p* (s)]** only fails First, let us define the second moments of a distribution as

at fourth order implies that a mean field approximation, in

which one explicitly assumes a product state, does give the

exact results up to the third moment pf (f). This is pre- M,(k) =(f; fi+k>=j df f £ P(F). (26)

cisely the reason why the mean field solutigf(f) differs

only marginally from the real solution. To be more precise,

the deviationp™(f) — p* (f) should change sign four times, \ye haye reintroduced the site indexandk is a displace-
since it does not affect all moments lower thidfl). Acare-  entvectorin a layer. As the system is translationally invari-
ful inspection of the numerical results in R¢#] for aq  4nt these second moments depend only on the displacement

distribution in whichq=0.1 or q=0.9 shows that these | The recursion for these moments is obtained by combining
small “wiggles” are indeed present. To magnify this effect, Egs.(2) and(4) as

we show our simulation data in Fig. 2.
For z=3, the problems already appear at third order.

30m5—117,+1
1T 6y, —2

Since we havg3,0,0}, {2,1,0}, and{1,1,1}, we encounter , - -

two independent equations fgr. Again, it turns out that the Ma(k)= 2 (J H(@)daa; a9 +k+a—a’,a’
equations can be solved if there is an additional relation be- o

tween theq moments: XMy(k+a—a'). (27
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Using the overline notation for thegaverages again, ER7)  with the position indices = (ky,k,, ... k,_1), and the dis-
becomes placementsy defined as
y=(a1—a,ar—a, ...,q,_1— ). (35

M3(K)= 2 0 a0 ks aar,arMa(kta—a’). (28)
aa' The dimensionality of the diffusion process has now become

This relation reveals from which point@ correlation spage  (N—1)(d—1). The transition rates can be calculated as

the momentM (k) receives a contribution during a recur- W)= .0 — (36)

sion step. However, it is in fact easier to consider the oppo- Y Aialig oy Givkygoan g

site relation, revealing how much a moment contributes toAnalo ous to the second moments, these transition rates are
correlation space points during recursion. The “inverse” of 9 ’

Eq. (28) becomes all 1/z", as long as the i_ndices of the positi(_)n veatare not
equal to zero nor coincide. However, the differing rates make
the problem complicated, because one has to deal with dif-
(29) ferent transition rates at special points, lines, planes, etc., in
the space of diffusion.
This latter relation allows for a master-equation-type formu- One can now study the correlations at infinite depth by

M,(K) =0 o Otk arMo(kta'—a) forall a,a’.

lation, as we may write it in the form finding stationary states of the master equation for the mo-
ments. As a first attempt to construct a stationary solution,

MK = Ma(k) =S W (K— )M o(k— i..e., M;(r)_—Mn(r)=0, one can try a detgiled balance solu-

2(K) 2(K) Zy AK=7IMa(k=7) tion. Detailed balance means that there is no flow of “prob-

ability” from one point to another. In that case, all terms of
—W_,(K)M(K). (30) the sum on the right-hand side of E@4) vanish individu-
ally, i.e.,

W (DM =W,(r—=pMy(r—%) allt,y. (37

This condition can also be formulated in termsetémentary
loops which are the smallest possible pathways from a point
32 to itself. For all lattices in this study, these elementary loops
are triangles, and we denote the three jump rateads )
In the current problem, where we consider second-order maf (a',b",c’) depending on the direction in which the loop is
ments, the transition rates are particularly simplek#0, traversed. It is easily verified that the property
the q averages are independent, and will always give the e
value 1#2 [this only holds forq distributions of the type Eq. abc=a’b’c (38)

(3)]. If k=0, one encounters second moments;0d)), asin  must be obeyed imll elementary loops in order to have a

The transition rates are defined as

W, (K) =0 oli+k,a'» (3D
with y determined by the set,a’ as

y=a'—a.

Eq. (21). This leads to the following transition rates: detailed balance solution. In the following section we show
1—7 that correlations appear whenever the detailed balance con-
k=0=W,(0)= 7,, WWO(O):Z(Z— oL ditions are not obeyed.

V. HIGHER-ORDER CORRELATIONS

1
k#0=W, (k)= - (33 In this section, we study the nature of the correlations for
z g distributions of the type Eq(3) that do not fall into the

So, the moments evolve in an anomalous diffusion process, pecial class of Eq17). We first solve the stationary master
RS . - pro gquation for the second-order moments, for which we al-
with differing transition rates at the origin. For a detailed

: . i . ready know that there are no correlatidi@ec. Ill). For the
discussion of the corresponding dynamics, see [R&fNote . : - ;
AR . ; ; triangular packing £=2), correlations only show up at
that this diffusion takes place in d{ 1)-dimensional space,
. . . fourth order, and these fall off asr®/ For z=3, there are
asa, and therefore alsg, is a displacement in a layer. In the

remainder of this paber we use the bold notatonhenever third order correlations that also decay with a power law; for
. pap fon the fcc packing ¢=3) the decay is 1. Finally, we provide
the displacement is really a vector.

The advantage of this somewhat formal representation ig simple relation to calculate the various exponents.

that we can take it over to higher order moments without
further ado. The generalization of the master equation for the
nth order moment®1,,(r) becomes In order to get familiar with the structure of the master
equations, we first consider the second-order moments de-
P _ _ o scribed by Eq(30). Away from the origink=0, all transition
Ma(1) = Mn(r) E’y Wil = ) Ma(r =) =W, (Ma(1), rates of Eq(33) are identical. Therefore, the detailed balance
(34 condition Eq.(37) requires allM ,(k# 0) to be identical. The

A. Second-order moments: No correlations
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value at the originM,(0) has to obey a detailed balance
condition for eachy# 0, but these equations are identical for
all y because the corresponding rates are the same. Putting
M,(k#0)=1, one obtains the stationary solution

z—1 "
(fifi)=1 21=zn) (39)
1, k#0.

This solution precisely describes an asymptotic state without
any two-point correlations, as the average of the product
(fif;) equals the product of the averages for iafj. Of
course, any multiple of Eq:39), also forms a stationary so-
lution of Eq. (30). However, these solutions are physically
irrelevant in the thermodynamic limit, where the lattice size
—oo [9]. Moreover, we find that the asymptotic second forceit is not possible to construct a detailed balance solution in
moment is solely determined by and 7,. For critical @  this case. First, we write the displacement vectorsyas
distributions one hag,=1/z, leading to a diverging second =(a'—a,a”"—a)=(vy1,v), Where thex’s andy’s are two-
moment. dimensional vectorgFig. 1). One can jump away from the
origin with two different rates, namel;q'fqz and g10,03-

B. Third-order moments These rates correspond Q= vy, (towards a special plane
and y,# v, (into the bulk respectively. Checking the de-
tailed balance condition in the elementary trianglégin-
plane-bulk-origin it turns out that Eq(38) is only obeyed if
73 and 7, are related as in Eq25). Of course, this is pre-

i - ) cisely the case for the class of Ed.7) for which we know

k=1, for whlcr;the transition rates of E(B6) differ from the 5+ 3symptotic factorization occurs. In general, however, it
bulk value 1£°. Moreover, the rates at the origh=1=0 5ot possible to construct a detailed balance solution for the
differ from both the bulk rates and the rates on the speciairq-order moments. In the next paragraph, we show that the
subspaces. absence of detailed balance indicates that there are force cor-

Let us first consider the triangular packing=(2), for  (g|ations that decay with a power law; in this case the decay
which the third-order moments diffuse on a two-dlmensmnais 154

lattice, with differing rates on three special lines. As these

lines are all equivalent, it is natural to draw them at an angle

of 120°, see Fig. 3. We then obtain a triangular lattice, with C. Fourth-order moments

transitions to six nearest neighbors and twelf-jumps .
which are “transitions” to the same lattice sites£0). The The fourth order moment{s‘ifkaiﬂ Fioem) of the trian-
detailed balance condition between a special line and th@ular packing diffuse on the bcc lattice depicted in Fig. 4.
bulk is naturally identical to the second-order condition, im- | N€ three directions,l,m precisely define a bcc primitive
plying the same ratio as in E(B9). As the transition rates at cell [13]. There are now differing rates at the origin as well

the origin are again identical for eagh# 0 (because of sym- as on lines and planes for which one or more indices Coin_-
metry), one can construct the following detailed balance socide orare equal to ZEr0. The precise geometr_lca}l structure Is
explained in Appendix B. There are now tvagpriori differ-

FIG. 3. Triangular packing: third-order moments diffuse on a
triangular lattice.

The diffusion of third-order momentd; f; . f; ) takes
place on a 24— 1)-dimensional lattice, since there are two
free parameterk and! of dimensiond—1. On this lattice,
there are threspecial subspacesiamelyk=0, =0, and

lution: o - .
ent directions away from the origin, that is tworners
(o N (f3f,,,) and tobody centerg f2fZ, ). Checking the loop
———» origin condition Eq.(38) for the looporigin—cornerbody-center
(1=27; origin, one finds that it is only satisfied wheyy, and 7, are
(i fik i) =1 1 _ (40)  related as in Eq(24).
2(1-27,) lines The question that emerges is: What are the stationary so-
lutions of the master equation, when the detailed balance
(1, bulk. condition is frustrated at the origin? To answer this question

we first consider a simplified version of the bcc problem, as
This means that there are also no three-point correlations fax first-order approximation. In this simple version, we as-
z=2: at the origin we encountéf3), on the lines we have sume that all jump rates arezt~ 1/16, except at the origin
(2, ) =(f2(f), and in the bulk(f, f, . f;,,)=(f)%. Itis  where we distinguish between the two different directions.
easily checked that condition E(B8) is indeed satisfied in Although we neglect the differing rates on the special lines
every elementary loop. and planes, the loop condition is still frustrated in the el-

For the fcc packingZ=3), the third-order moments dif- ementary loop origin—corner—body-centerorigin. Using

fuse on a four-dimensional lattice. Unlike the-2 packing, X=,W,(r)=1, we write the stationary master equation as
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Note that this is a discrete version of Poisson’s equation: the
LHS is a discrete Laplacian and the RHS, originating from

deviating rates, acts as a multipole around the origin. This
equation is solved in Appendix B by a Fourier transforma-

tion, leading to

- E(k)
— (48)

7 .
M(r)=§+|v|(0)§k‘, 1—(k)exp(—ik-r).

The functionsD (k) and E(k) are defined in Appendix B;
1-D(k) comes from the discrete Laplacidm the con-

tinuum equation it would simply bk?), E(k) is the Fourier
transform of the source, and the sum o¥eis the inverse

FIG. 4. Triangular packing: fourth-order moments diffuse on aFourier transformation running over the Brillouin zone. The

bcce lattice.

M(r>=Ey W (r—y)M(r—y), (42)

or
[1—2Wo(r)IM(r)= ;O W (r—y)M(r—y). (42
Y

This allows us to eliminate the tweelf-rates W by means
of a simple transformation:

M(r)=[1—2Wo(r)IM(r),

W.(r) =W, (r)/[1—2W,(r)]. (43

amplitude of the sourceM(0) can be obtained self-
consistently, by setting=0. This involves a complicated
integral over the Brillouin zonéBZ) of the bcc lattice; the
outcome, however, will be of the order unity. The lange
behavior of the correlations is determined by the snkall
behavior, scE(k)/[1—D(k)] has to be expanded aroukd
=0. The first term that gives a contribution is

49 [ dk (KZKS+kIkZ+KZkD) exp( —ik-r)
24 fV_Bz K2

1

ol

(49

N 34&6[ 5( x2y2+y?z2+ 72x?
r

N 3277'\_ 9

The solution of Eq(47) decays as 1?; the termsx?y?, etc.,
give the proper angular dependence. This result can be di-

The sum over the new rates again adds up to unity and EGectly understood from the analogy with electrostatics. The

(42) becomes

M(r)= 2 W, (r—yM(r—9). (44)
y#0

solution of Poisson’s equatio@7) can be expanded in as-
ymptotically vanishing spherical harmonic¥;,,/r'*1. The
symmetry of the bcc lattice allows only harmonics with
=4, leading to the observedr}/decay.

So we find that the stationary master equation for the

Hence we can omit the self-jumps by first solving the equamoments becomes a discrete Poisson’s equation, and the
tion for the “hatted” variables, and then transforming back presence of differing transition rates leads to a multipole

to M(r). As M(r)—1 for larger, it is convenient to write

I\7I(r)=g[1+ SM(1)]. (45)

source around the location of these rates, sed k). How-
ever, this source is only “active” if there is no detailed bal-
ance, since detailed balance leads to trivial solutions like Eq.
(40) [15]. Keeping this in mind, let us now investigate the
real fourth-order problem, including the differing rates at the

correlations[14]. After eliminating the two self-rates, all i still approached as 3, but the amplitude of this field will

rates to the eight cornefs) can differ from the rates to the rates at the lines and planes will act as sources as well. Their

six body centerslf). We, therefore, have

W, (r)=1/14+ 8(r)e,. (46)

The rates to the corners are denotedehyand those to the
body centers by, . They fulfill the condition &+ 6¢y
=0. This results in the following equation:

. 1 . 8.
SM(r) =7, Z‘o 5M(r—y)=7M(0)§0 £,0(r—7).
(47)

amplitudes, however, will decay with increasing distance,
since the “flow” associated with the absence of detailed bal-
ance becomes zero at—». The effect of the induced
sources at the special lines and planes can be taken into
account perturbatively. The first step is to only consider the
effect of the origin, as we have done above. The second step
would be to compute the strength of the sources at the lines
and planes on the basis of the first-order solution, and then to
determine their functiorE(k) and recalculate the solution
Eqg. (48). The induced sources around the origin basically

lead to a modification of the strengi¥ (0), but not of the
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asymptotic decay. Hovx_/ever, the far away points at the I|r!es W_1(K) =0 + 10 +k— 1= + 120 1= i sk +172)

and planes could modify the asymptotic decay. A closer in-

spection of the field of these sources shows that it is of order =1/2—Wy(k). (51

1/r7, since the differing rates lead to a local Laplacian acting _

on the first order-field decaying ag 1/ Hence, every step of Asymptotically, Wy(k) has to approach the value 1/4, fpr
this perturbative calculation yields a leading term®Lthe  distributions without long-range correlations. As the second
amplitude changes in every step and its determination is Enoments difque on a line, one can easily construct a detailed
difficult problem indeed. balance solution:

[1/2—=Wo(k—1)IM(k—1)=[1/2—Wy(k) M (k), (52
D. Correlations for general z

From the previous section, it is clear that correlations oc®r
cur whenever the detailed balance condition is frustrated 1/2— W, (0)
around the origin. The stationary master equation then be- M (K)= —OM(O). (53)
comes a discrete Poisson’s equationnir-(1) (d— 1) dimen- 1/2—Wp(k)

sions, leading to correlations that decay with an integer = ] )
power of the distance. Following the derivation in Appen- 1Nis is the general form of the two-point force correlations
dix B, it is clear that the asymptotic behavior comes from theM (k) in the triangular packing, as a function @fo(k) that
lowest nonisotropic term inE(k), since division by 1 describes they correlations. One can draw two interesting
—D(k)~k? gives a singularity. The value of the exponent conclusions from this result. First of all, there can only be an

can be calculated as uncorrelated solution Wy (k) is constanti.e., 1/4) for each
k#0. This means that even the smallgstorrelations lead
(n=1)(d—1)+0-2, (50)  to force correlations. Second, the long-distance behavior of

the two-point force correlations is identical to that of the
two-point q correlations, following from the simplicity of

where 1—1)(d—1) is the dimensionality of the correlation Eq. (53).

space and is the order of the lowest nonisotropic terms in
the expansion oE(k). Although this result is remarkably
simple, the actual calculation d(k) is not trivial, as it
reflects the symmetries of the jump directions on time (  Unfortunately, the analysis is much more complicated for
—1)(d—1)-dimensional lattice. Working out the four— the fcc packing, whose second-order moments live on the
dimensional lattice of the third-order moments in the fcctwo-dimensional triangular lattice of Fig. 5. We, therefore,
packing, we find thaD=2 and correlations vanish asr4/  allow only correlations between values at neighboring
sites. Remember that one can easily construct an uncorre-
lated solutionM (r) for uncorrelated; distributions, Eq(39),
VI. CORRELATED q DISTRIBUTIONS since all detailed balance conditions at the origin are identi-

So far, we have only discussedlistributions of the type cal_ by symmetry. This still holds when Fhere are nearest-
Eq. (3), for which there are no correlations betwegmalues ne|ghpor correlations. However, thg detailed balance qondl—
at different sites. We have shown that, for thegdistribu- tion will now be frustrateq on the.rlr)g pf surroupdm_g sites,
tions, there are no asymptotic two-point force correlations. IS these are connected in foaurpriori different directions,
this section we will demonstrate that even the smallest cor$€€ Fig- 5. In analogy to the problem discussed in the previ-
relation betweem values at different sites induces two-point ous section, the stationary master equationd®(r) trans-
force correlations. We first solve the problem for arbitraryforms into
correlations in the triangular packing. Then, we study the fcc
packing assuming only a neargst-neighhanorrelation; this SN (r)— 1/62 SM(r—y)=p(r). (54)
already leads to force correlations that decay a8. 1/ y#0

B. fcc packing with nearest-neighborq correlations

) ) . . ) The “charge density’p(r) is only nonzero around the frus-
A. Triangular packing with arbitrary ~ q correlations trated ring, see Appendix C. Again, it is a discrete version of
In general, thgsecond-ordértransition rates are defined Poisson’s equation, but now in two dimensions. The solution
by Eq. (31). For z=2, the displacement vecter can only ~ can, therefore, be expanded in cylindrical harmonics,

take two values, for which we conveniently choasg. This ~ exp(n¢)/r", and the sixfold symmetry of the lattice requires
allows us to write the transition rates as n=6. The problem is again solved rigorously by Fourier
transformation of Eq(54). In Appendix C we show that

Wo(K) =0 + 1720+, + 12= di, - 1720i +k, — 112

SM(r) , (59

. cog6¢)
o S0P

6
W 1(K) =0, - 10i 1k, +12= i, - 17 L =iy, - 172) '

=1/2—Wy(k), which is in agreement with the simple electrostatic picture.
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O O O marginally differ from the mean field solutiongl]. The
(single-sit¢ mean field solutiong™(f) are correct up to the
third-order moments, for the triangular packing. This implies
that p™(f) “wiggles” around the real solutiorp* (f); the
deviationp™(f) — p* (f) changes its sign four time§ig. 2).
Packings that have more than thrgevalues per site
=3) already have third-order correlations. Also this time
correlations only decay algebraically; for the fcc packing we
find 144, This algebraic decay can be understood from an
analogy with electrostatics. The force moments evolve ac-
cording to a master equation, and the corresponding station-
O O O ary state is described by a discrete version of Poisson’s equa-
FIG. 5. fcc packing: second order moments diffuse on a trian-tlo.n'. The f‘soqrce” turns.out to be a muiltipole around the
i S - e origin, which is only active whenever the master equation
gular lattice. The ring around the origin has differing rates. . . -
has no simple detailed balance solution. The moments there-
. . fore approach their asymptotiancorrelategivalues algebra-
So, for the fcc packing, we find that even a nearGSt"lcaIIy. FBI'phe value of thg egponent depends on the gimension

neighborq correlation leads to two-point force correlations fth |ati 1)(d—1 th t
that decay with a power law. This algebraic decay is genericgf thg (;}?L::Ep%;gnssep:CE?gO) )(d=1), and on the symmetry

for z=3 since anyg correlations lead to a master equation

. . Although in general correlations do exist, there is a spe-
whose detailed balance relations cannot be solved around tl&?al class ofq distributions, given by Eq(17), for which
origin. ! !

there are no force correlations at all. This has been demon-

strated by means of conditigti4), which has a nice physical
VII. DISCUSSION interpretation. It can be shown that the functig(s) is the
Laplace transform of the distribution dfiterparticle forces
that live on the bonds connecting the particles;,
=0; . fi . Although theg’s leaving a site are correlatéthey
have to add up to 1), the corresponding, can become
statistically independent. It is only when this miracle hap-
Eens that the force distribution becomes a product state. Nev-

We have studied force correlations in thenodel at infi-
nite depth, for generaj distributions. The calculated corre-
lation functions are rather unusual: fqistributions of the
type Eq.(3), correlations only show up at higher orders, and
these correlations decay with a power of the distance. Th
only exceptions are the Q|str|but|ons.g|\{en _by Eq(17), ertheless, the distributions for which this is the case range
which do produce a factorized force distribution. The results, . infinitely sharp ¢ —o) to almost critical (—0). It is

fpr thg triangular packing and the fCC. packing are Sum,mainteresting to note that a similar calculation has been done
rized in Table I. As an example, consider two different site

Srecently for the asymmetric random average pro¢ASAP
i andi +k in a layer of the triangular packing. Since there are 16] Tr):is 1+1 dir)r/1ensional model maps %ntr()) tgAanodél
no correlations in the second- and third-order force moments, .., triangular packing, with a broken left—right symmetry.

gztzzgglggxeviriﬂ(i(:ﬁg;g (ng‘>’ |>n ‘;ﬁg??ﬁﬁ”tfgi‘e The extension of our calculation to asymmetndq) is
' ’ i itk i itk straightforward10]: one has to replaceby r,, andzr by

correlated and approach their asymptotic value &3. e - =
fact that one has to go to higher orders to observe forcezar“ in Eqs.(16)—(19).

. . : X ; Finally, we found that there will be two-point force cor-
correlations is the reason why numerical simulations onlyr

elations whenever theg values of different sites are corre-
lated. Even with only nearest-neighlkspcorrelations, the fcc
(z=2: d=2) and the fcc packingz-3: d—3). The nth-order packing has for'ce qorrelations t_h_at vanish a§.JA'gain, the

’ ’ ' triangular packing is less sensitive for correlations; the na-

f ts diff 1)(d—1)-di ional lattice; th . A .
orce moments dilluse on a_w ) , )-dimensional lattice; the ture of the force correlations is identical to that of the
lattice structures are listed in the first row. The second row shows

the nature of the corresponding force correlations in the stationarﬁorrelat'ons’ Eq(53).

TABLE I. Summary of the results for the triangular packing

state.
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a;a - -q22=J n(d)ﬁ(l—E qa)dtiqzlqu- g
(A1)

These different moments are not independent because of the

PHYSICAL REVIEW@S 051306

TABLE II. The transition ratesV,(r) for the fourth-order mas-
ter equation.

From\ to (0,0,0)

k,0,0) (k0 (k!1,0) (kI,m)

S constraint. As the distributions are normalized, the zeroth-

order moments are unity; the first-order moments are, opyigin

course, all 4. All second-xorder moments, for which;n;

(000) af i, od?

=2, can be described by only one free parameter. Defining. (k,0,0) — —
7o 8 LSCTNAINE T U O i
. . Line () (K.k.0 22 S Zaa (a2 2o (a2
nn=f n(q)5<l—2 qa)dqq? (az) Ume® (kk0)  (@)° aigd, (@) aicd (4
@ k,1,0 — — — N
Plane | i i i G
one finds (k.k,1)
z Bulk (k,I,m) % % %
;1 10i= 72+ (2= 1)010;
1_27]2
z
~ - r= . (A9)
=J n(q)(S(l—E qa)dqqliEl qi=1/z, 4m-1
(A3)  From this one can calculatg, as a function ofr,, which
precisely results in Eq24). A similar inversion forz=3
hence leads to
I 1/ A4 _173m A10
q102= (Z_l)( z 772) ( ) r_gnz_l’ ( )

From a similar argument, one can derive for the third-ordefrom which one derives Eq25).

moments

q5= qzq=¢( ~73) (A5)
1= 73, 142 (z—1) 72— 13)-

Forz=2 there is even a relation between and 7,:
- —— 3
1=2, didth=27s+ 60i= ng=5 72~ L/4. (A6)
For z=3, there is an additional third moment, namely,

1= 2”2 0i0;0k= 373+ 18070, + 601003

1
=>Q1Q2Q3:g(1_9772+6773)- (A7)

The extension to higher orders and higheis straightfor-
ward.

For the special class of(q) defined in Eq(17), one can
calculate the moments,, from a generalization of Eq16)
[10],

T(znT(r+n)

T ) 9

In order to show that Eq24) is indeed obeyed by the special

class(with z=2), we first invert Eq(A8) for n=2,

APPENDIX B: THE bcc LATTICE

In the triangular packing, the fourth-order force moments
(fifi ok fi) fiom diffuse on the bcc lattice of Fig. 4, with
differing jump rates on special lines and planes. In this ap-
pendix, we list these rates explicitly and we solve the corre-
sponding stationary master equation.

The jump rates can be calculated from

W (K I,m)=0i o Di+k.a’ Di+1,0” Di+k o (B1)
with the z*=16 jump directions
y=(a'—a,d"—a,a"—a). (B2)

As «a can take the values 3, there are twaself-ratesfor
which all a’s are the same. As a consequence, there are 14
outgoing directions, namely,*+(1,0,0), *(1,1,1), and
+(1,1,0) plus their permutations. The first two are directions
for which three of the foura’s are equal, and they corre-
spond to thecornersof Fig. 4; the third represents the jumps
towards thebody centerslf all position indices in Eq(B1)
are different, the transition rates are simply*t1/16. On
the special lines and planes where one or more position in-
dices coincide, we encounter differing rates. The geometry of
the problem is summarized in Table II.

From this table we deduce the ratesto the corners and
ey, to the body centers, which occur in relatigtb). We find
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93q 1 922 1 This integral can be evaluated by differentiation of the well-
PO (83)  known equation
1-2q7 14 1-2q]

dk exp(—ik- r) 1
and one easily verifies from the propety+q,=1 that the VBZ K2 = 4ar’
relation & .+ 6e,=0 holds. In general, the rates do not obey
the detailed balance condition E38) in the elementary
loop origin—corner-body-centerorigin. Keeping only the
rates in this loop as deviations from the bulk leads to Eg.
(47). For the definition of the two functiong(k) andD (k)
we introduce two auxiliary functions: one for the contribu- APPENDIX C: g CORRELATIONS IN THE fcc PACKING
tion of the corners

(B11)

where a factok, in Eq. (B10) corresponds to applying/ dx.
This leads to expressm(mg)

In Eq. (54) we formulated the problem for the second
Ky + Kyt k, Ko— k. 4+ k Kotk —k moments in the fcc packing with nearest-neighaorrela-

1 . . - .
E. k)= 21005 +cos—— cos=> 2y z tions. The “charge densityp(r) on the right-hand side of
the equation is the product of the mom&m(y), referring to
ky—ky—k, the neighbors of the origifall are the same by symmejry
+COST (B4)  with a function whose Fourier transform is given by
and one related to the body centers E(k)=> W, exdik-(y+y)]. (C1)
1 vy
== + + )
Ep(k) 3(C05kx cosky + cosky) (B5) Thew,_,, are the deviations from the bulk transition rates
5 5 1/6. These are only nonzero for the ring of nearest neighbors
The two functionsD (k) andE(k) are then given as around the origin shown in Fig. 5,
~ 4. 3. =_ - _
D(k) = Ec(k)+ ZEp(k), Wo= =0, WamWem e,
Wr=Wyu= —¢&yp, W3:80+281+282. (CZ)
E(k)=e[Ec(k)—Ep(K)], (B6)
The equalities reflect the symmetry of the triangular lattice.
with e =8g.= —6¢y. Inserting Eq.(C1) into the Fourier transform of Eq54)
For the large behavior we need the expansions for smallleads to
k. One finds
M(r)=2/3+M(y) >, ﬂexp(—ikw) (C3
E (k)= 1—§k2+ 384k4+4(k2k2+k2k2+k2k2)]+--- Y4 1-D(k) '
(B7) .
The consistency equation fod (y) follows by takingr as
and one of the nearest neighbors of the origin. The funciigk)
is given by
Ey(k)=1— —k2 2[k4 (KEKZ+KIKZ+K2KE) T+ - -
1 K, + \/3k ky— 3k
(B8) D(k)— cosk,+cos +cos— 5 Y,
From these expressions one derives the expansion (C4
Ekk)  7el, 7 , TKK+KIGHKIK andE(k) can be expressed as
P TP A R L ) ) )
(BY) E(k)/6=eo[1—D(2k)]+2g4[1-D’(k)]+2e,[1-D(k)],
C5
The first two terms in the expansion are regular and thus give . €3
rise to short-range contributions. The last term leads to th&ith the new function
asymptotic behavior, by means of the inverse Fourier trans- B B
form D' (k)=D(V3ky,V3ky). (C6)
f dk (k§k§+k§k§+kfk§)exp(—ik~r) (B10) For the asymptotic behavior dfl (r) we must make an ex-
Vaz k2 ' pansion ofE(k)/[1—D(k)]. For the first two terms we find
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1-D(2k) 3 3 havior is given by Fourier inversion of the first singular term
2 4 i i
- - — K2+ — ink, ie.,
1-D(k) 1 16k 256k
1 KS— 6K+ 9K2K? f dk (k2 —6kzk:+9kZky)exp( —ik-r) 960 cog6¢)
12 K2 + . (C7) Vez k? (L
(C9
-D'(k 1 1 . : . -
;()zg 1— —k2+ —k4 This integral can be obtained by differentiation of
1-D(k) 8 128
1 k6_6k4k2+ 9k2k4 dk eX[?(—ik-r) |n(L/r) (Clo)
X Xy XNy S =~ ,
+ 288 k2 + ’ (C8) VBZ k2 2’77
and the third term is simply a constant. The asymptotic bewherelL is the size of the system.
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